Predicting the Price of Used Cars using Machine Learning Techniques
نویسنده
چکیده
In this paper, we investigate the application of supervised machine learning techniques to predict the price of used cars in Mauritius. The predictions are based on historical data collected from daily newspapers. Different techniques like multiple linear regression analysis, k-nearest neighbours, naïve bayes and decision trees have been used to make the predictions. The predictions are then evaluated and compared in order to find those which provide the best performances. A seemingly easy problem turned out to be indeed very difficult to resolve with high accuracy. All the four methods provided comparable performance. In the future, we intend to use more sophisticated algorithms to make the predictions. Keywords-component; formatting; style; styling; insert (key words)
منابع مشابه
Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملProvide a stock price forecasting model using deep learning algorithms and its use in the pricing of Islamic bank stocks
Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...
متن کاملStock price analysis using machine learning method(Non-sensory-parametric backup regression algorithm in lin-ear and nonlinear mode)
The most common starting point for investors when buying a stock is to look at the trend of price changes. In recent years, different models have been used to predict stock prices by researchers, and since artificial intelligence techniques, including neural networks, genetic algorithms and fuzzy logic, have achieved successful re-sults in solving complex problems; in this regard, more exploita...
متن کاملImproving Stock Return Forecasting by Deep Learning Algorithm
Improving return forecasting is very important for both investors and researchers in financial markets. In this study we try to aim this object by two new methods. First, instead of using traditional variable, gold prices have been used as predictor and compare the results with Goyal's variables. Second, unlike previous researches new machine learning algorithm called Deep learning (DP) has bee...
متن کامل